Detecting Global Influential Observations in Liu Regression Model
نویسندگان
چکیده
منابع مشابه
Detecting influential observations in Kernel PCA
Individual observations can be very influential when performing classical Principal Component Analysis in a Euclidean space. Robust PCA algorithms detect and neutralize such dominating data points. This paper studies robustness issues for PCA in a kernel induced feature space. The sensitivity of Kernel PCA is characterized by calculating the influence function. A robust Kernel PCA method is pro...
متن کاملJackknifed Liu-type Estimator in Poisson Regression Model
The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regressio...
متن کاملDetecting influential observations in principal components and common principal components
Detecting outlying observations is an important step in any analysis, even when robust estimates are used. In particular, the robustified Mahalanobis distance is a natural measure of outlyingness if one focuses on ellipsoidal distributions. However, it is well known that the asymptotic chi-square approximation for the cutoff value of the Mahalanobis distance based on several robust estimates (l...
متن کاملDetection of single influential points in OLS regression model building
Identifying outliers and high-leverage points is a fundamental step in the least-squares regression model building process. Various influence measures based on different motivational arguments, and designed to measure the influence of observations on different aspects of various regression results, are elucidated and critiqued here. On the basis of a statistical analysis of the residuals (class...
متن کاملDetection of Influential Observation in Linear Regression
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Journal of Statistics
سال: 2013
ISSN: 2161-718X,2161-7198
DOI: 10.4236/ojs.2013.31002